
10 Code

documentation
templates

Developers, and development teams deserve and need good
documentation. When such documentation exists – it makes the
onboarding process easier and faster, it helps teams be more agile and
transfer knowledge when needed, and it helps you in those cases where
you need someone to understand something in the moment – for
example, when you have a bug affecting production and you must find a
solution.

While high-quality and up-to-date documentation is an essential
component of software development, developers today lack efficient code
documentation and relevant tools.

To help you get there faster, Swimm created a new bank of templates to
inspire you with suggestions about what exactly to write to make you
better documentarians. This way, you can overcome “writer’s block” and
gain the confidence to know that creating effective documentation does
take just a few minutes.

The following templates include a mix of instructions for those
documenting, in addition to the elements the documents actually require.
You can use each template as is, on any documentation tool you’re using,
or you can also sign up to Swimm, create a new document, and select a
template from Swimm’s internal template library.

Click to access all templates on GitHub

https://swimm.io/blog/get-started-with-technical-documentation-writing-best-practices/
https://swimm.io/blog/get-started-with-technical-documentation-writing-best-practices/
https://github.swimm.io/Swimmio/templates/tree/main/.swm/doc-templates

1

Template 1:

A flow in the code

Introduction

This doc describes the flow in our system. We will follow its

implementation across the various locations so you can understand how the

different parts create the full picture.

Following the flow

Include the code snippet showing the first step where the flow begins - e.g., the

entry point, or an API call. From there, keep from the next

steps of the flow.

Things to note

Actually, selecting the relevant code is most of the work. Now all you have to do is

explain how the different parts interact, and what’s important to know and is not

clear from reading the code.

Describe who uses this flow and when? Context is everything, and if

documentation doesn’t spell out the relevant parties, it may not be clear.

{{SUBJECT}}

{{adding snippets}}

When should you use it?

A "flow in the code" documentation template is valuable for documenting complex

algorithms, critical business processes, and integration points. Complex code can be hard to

understand, even by the person who wrote it. Creating documentation that explains complex

code saves you and your team a lot of time when revisiting the code in the future.

2

Template 2:

Architecture decision records

Status

There are many possible statuses. A decision may be "proposed" if the project

stakeholders haven't agreed with it yet, or "accepted" once it is agreed. If

stakeholders change or reverse a decision, it may be marked as "deprecated" or

"superseded", with a reference to its replacement

Context

This section describes the forces at play concerning the decisions. Who, what,

when, where, why, and how regarding the project should be answered in this

section. The language in this section is value-neutral. It is simply describing facts.

Consequences

This section describes our response to these forces. It is stated in full sentences,

with active voice. For instance, it may begin with “We will…”

Decision

This section describes the resulting context, following the decision’s application.

All consequences and outcomes should be listed here, not just the "positive" ones.

Just one decision may have positive, negative, and neutral consequences, all of

which may affect the team and project in the future, if not immediately.

When should you use it?

Architecture Decision Records (ADRs) serve as a valuable tool in the software development

process, offering a structured approach to documenting decisions made during the project's

evolution. You should consider using ADRs in the event of change management, historical

record maintenance, and decision making transparency.

https://adr.github.io

3

Template 3:

Component or service overview

When should you use it?

A "Component or Service Overview" document is a valuable resource when you need to
understand the key aspects of a component. It should be used

 To gain a clear understanding of the component's main features and how it can be accessed
 To familiarize yourself with the directory structure of the component or service
 To comprehend the key design decisions that have shaped this component
 To become acquainted with essential terms and concepts relevant to the component.

Main Features

This section outlines the key features that define . These
features encompass its interface, directory structure, design decisions, and
important terms within a glossary.

Interface

To begin, ask yourself “How can this component be accessed?”. Understanding its
interface is essential for effectively integrating it into your project.

Directory Structure

Take a close look at the directory structure of . Mention
the main folders within the component. By doing so, you'll gain valuable insights
into its layout and architecture.

Design Decisions

Explain the key design decisions that influenced the development of

. This section will provide a deeper understanding of the
thought processes and choices that have shaped its functionality and structure.

Glossary

Present a glossary of essential terms and concepts relevant to

. This glossary serves as a reference to ensure that all
team members and stakeholders share a common language and a comprehensive
understanding of the component. Trying getting started with “Here are some
important terms to know:”

{{COMPONENT NAME}}

{{COMPONENT NAME}}

 {{COMPONENT NAME}}

 {{COMPONENT NAME}}

Template 4:

Dev environment setup

Installations:

For example

 Begin by installing Node.js, with version 14.x as the recommended choice

 Secure an Integrated Development Environment (IDE), such as Visual Studio

Code (VS Code)

 Make sure Git is installed on your machine. If it's not, install it.

Getting the Sources

 Clone the repository locally with the following command

 git clone https://github.com/my_company/company_repo.git

Build:

Within the repository directory, follow these steps

 Execute to install the project's dependencies

 Build the project by running .

Troubleshooting:

If you encounter an error like 'Cannot execute command (...) - "need executable

'ar' to convert dir to deb," you might need to install the 'binutils' package.

Use this command to ensure it's available:

yarn install

yarn build

 sudo apt-get install binutils

4

When should you use it?

A "Dev Environment Setup" guide is essential when you need to configure your local

development environment. Use this document to ensure a smooth setup and efficient

development process.

https://github.com/my_company/company_repo.git

5

Run the Tests

 To run all tests, use the command:

 For specific subsets of tests, utilize commands like or

.

Running the Application

 macOS and Linux users should execute

 Windows users can run

 For web development, use .

Useful Scripts

 Serve your code with a development web server:

 To package the application for production and generate installers, use:

 Explore the file for a full list of supported yarn scripts.

Debugging:

For debugging purposes, open developer tools by pressing Command+Option+I

(Mac) or Control+Shift+I (Windows, Linux) to access the Console panel. You can

also utilize breakpoints for efficient debugging.

Congratulations! Your development environment is now configured and ready

for action.

yarn test

yarn test:server yarn

test:utils

./scripts/run.sh

.\scripts\run.bat

 yarn web

yarn dev

 yarn pack

package.json

Template 5:

Engineering design

References:

Incorporate relevant documents that provide context or additional insights.

Additionally, provide a link to the Product Requirements Document (PRD) for a

deeper understanding of the feature's requirements and objectives.

Goals:

Define the primary objectives and goals for the feature, outlining the specific Key

Performance Indicators (KPIs) that will gauge its success.

High-Level Design:

Visualize the high-level design with tools like flowcharts to elucidate the system's

architecture and logic. Furthermore, include references to

 DB Changes: Provide a detailed account of any modifications or updates to the

database, covering schema changes and data model adjustments

 UI Components: Clarify the user interface components involved in the featur

 Storage: describe where information is stored, such as in the state or local

storage.

6

When should you use it?

An "Engineering Design" document plays a crucial role when you need to establish a

comprehensive technical plan and overview for a feature or system. This document finds

utility in various scenarios. For instance, it can include details such as:

7

Third-Party Integrations:

Outline the integrations with external services, APIs, or platforms. Describe the

data flow and interactions with third-party entities, as well as

 Logs: Discuss the mechanisms in place for logging events and errors within

the feature

 Analytics: Specify the analytics tools or methods employed to collect

performance data for the feature.

Additional Elements to Consider:

Highlight any other pertinent aspects or elements not covered in the preceding

sections that bear relevance to the engineering design, including

 A plan for introducing tests

 Strategies for migration where applicable

 Address security implications and the measures in place

 Develop a roll-out plan to effectively implement the feature.

Template 6:

Incident report

What happened?

Provide a brief and concise description of the incident, summarizing the key

details of what occurred during this particular event.

Who was involved?

Identify the individuals or teams engaged in debugging, investigating, and

resolving the issue. You may opt to keep the involvement anonymous or specify

the engineers or teams from different departments who played a role in incident

management.

Who or what was impacted?

Explain the extent of the impact caused by the incident, and if possible, quantify

the damage. Specify the tasks, functionalities, or user experiences affected during

the incident.

What was the root cause?

Delve into the root cause of the incident, describing the sequence of events

leading to the incident. Work backward as far as possible, from the inception of

the issue to the immediate events preceding the incident.

8

When should you use it?

An "Incident Report" is invaluable when you need to analyze and document incidents to

understand what happened and identify areas for improvement. Use this report when

investigating and addressing incidents or problems within your system.

9

How was it reported?

Detail how the issue was discovered, who reported it, and the process of

reporting. Include information about the individuals or systems involved in

incident reporting.

When did it happen?

Establish a comprehensive timeline of the incident, documenting key timeframes,

including the start and end of service degradation, the first alert raised, and

significant milestones associated with the incident. Use a format like this

 Service degradation start:

 Service degradation ended:

 First alert was raised:

 Timeline (time in UTC+2)

 - offending code was deploye

 - ..

20YY-MM-DD HH:MM:SS UT

20YY-MM-DD HH:MM:SS UT

20YY-MM-DD HH:MM:SS UT

20YY-MM-DD HH:MM:SS UTC

20YY-MM-DD HH:MM:SS UTC

Template 7:

Internal API

How does it work?

Provide a detailed description of the
API and how to correctly utilize it. This API becomes essential in scenarios where

 are relevant.

API definition

Present code snippets of the various function definitions that compose the API. This
will give the reader an understanding of where and how the API is implemented
within the system.

Simple usage

Demonstrate a simple example of how to use this API, providing a straightforward
illustration of its practical application.

Advanced usage:

Delve into the root cause of the incident, describing the sequence of events leading
to the incident. Work backward as far as possible, from the inception of the issue to
the immediate events preceding the incident.

Best practices and additional notes

When working with this API, it is crucial to adhere to specific best practices and
avoid common mistakes. This section provides guidance on optimal API usage and
offers additional insights for effective implementation.

{{API Name (e.g., sending Analytic Events)}}

{{use cases}}

{{explain a scenario where this is needed}}

10

When should you use it?

The "Internal API" type of document is a valuable resource when you need to understand and
work with specific APIs internally within your system. Utilize this document when you are
dealing with and implementing internal APIs for various use cases.

Template 8:

Product Requirements Document (PRD)

Problem Statement

In this section, define the specific user pain point that the feature aims to address,

as well as the motivation behind implementing this feature.

Requirements

The user flow when engaging with this feature is elaborated in this segment,

offering insights into the feature's functionality. Also address how edge cases will

be handled and any unique considerations that should be taken into account during

the feature's development.

UX

In this section, be sure to link to the relevant Figma file, allowing stakeholders to

access and review the user interface and experience design for the feature.

Rollout Plan

Here, explain the strategy for introducing the feature to customers. Specify whether

the release will be gradual or if it will be part of an A/B test, ensuring a clear

roadmap for deployment.

11

When should you use it?

The "Product Requirements Document (PRD)" is an essential resource used to outline and

communicate the requirements and objectives for a new feature or product. This document plays

a pivotal role in defining the specifications and development plans for a product or feature.

12

Analytics

This section outlines the approach to tracking the feature's performance using the

product analytics tool. It defines the events that should be triggered from the app

and those that should be sent to Salesforce for further analysis.

KPIs

Identify the success criteria for the feature. It includes specific metrics, outcomes,

or data points that will serve as indicators of the feature's success.

Template 9:

Research plan

13

Background

In this section, provide comprehensive context on the current state of affairs. Cover

all the essential information needed to grasp the research goals and objectives fully.

Goal

This segment outlines the specific issues you intend to solve and the overarching

goal of our research.

Issues, Considerations, and Constraints

In this part, document any constraints and considerations that may affect your

research, such as security limitations or performance requirements. It serves as a

reminder of the parameters within which the research must be conducted.

Past Directions and Relevant Knowledge

Delve into previous research efforts and any relevant knowledge that could provide

insights or solutions to the problem. This section discusses what has already been

tried and the knowledge that can be relied upon.

When should you use it?

The "Research Plan" is an invaluable document that outlines the strategy and steps for

conducting research, particularly in cases where extensive knowledge and data gathering is

needed. Use this document when preparing for research initiatives.

14

Prerequisite Reading / Information Finding

To ensure a thorough understanding of the problem at hand, outline the general

information you should gather before embarking on the research.

Possible Directions

For each potential research direction, detail your plans, outlining what actions you

intend to take and provide estimates of the time required for each step. This

structured approach ensures that research efforts are well-documented and

organized.

Template 10:

Testing overview

Testing Frameworks

In this section, specify the testing frameworks we employ, such as

 for unit tests and

 for end-to-end tests. It provides an

overview of the tools and technologies used in our testing process.

Running Tests Locally

Here, provide the specific commands for running tests, such as using yarn test.

This simplifies the testing process and helps team members quickly execute tests

as needed.

Run the Tests

Here, provide the specific commands for running tests, such as using .

This simplifies the testing process and helps team members quickly execute tests

as needed.

 {{UNITTEST FRAMEWORK (e.g., jest)}}

 {{E2E FRAMEWORK (e.g., playwright)}}

yarn test

15

When should you use it?

The "Testing Overview" is a crucial document employed to outline the testing strategy and

details for various types of tests. This document finds utility when preparing for testing

initiatives and ensuring a clear understanding of the testing framework and processes.

16

Writing Tests

In the "Assertions" section, add examples of common assertions used in tests,

explaining how they work. For instance, we illustrate how certain assertions are

used in tests to improve comprehension.

Best Practices

In this part, outline best practices to follow when writing tests. Emphasize the

structure of test suites and provide examples, such as how

tests the feature. Additionally, share specific best practices to

enhance the quality and effectiveness of our testing efforts.

{{path for a test file}}

{{feature's name}}

Template 1: A flow in the code

Template 2: Architecture decision records

Template 3: Component or service overview

Template 4: Dev environment setup

Template 5: Engineering design

Template 6: Incident report

Template 7: Internal API

Template 8: Product Requirements Document (PRD)

Template 9: Research plan

Template 10: Testing overview

Templates

Get a personalized demo

Sign up for a community demo today or

https://github.swimm.io/Swimmio/templates/blob/main/.swm/doc-templates/a-flow-in-the-code.pqkt5.t.sw.md
https://github.swimm.io/Swimmio/templates/blob/main/.swm/doc-templates/architecture-decision-records.pqkta0.t.sw.md
https://github.swimm.io/Swimmio/templates/blob/main/.swm/doc-templates/component-or-service-overview.pqkt4.t.sw.md
https://github.swimm.io/Swimmio/templates/blob/main/.swm/doc-templates/dev-environment-setup.pqkt3.t.sw.md
https://github.swimm.io/Swimmio/templates/blob/main/.swm/doc-templates/engineering-design.pqkt8.t.sw.md
https://github.swimm.io/Swimmio/templates/blob/main/.swm/doc-templates/incident-report.2so2u.t.sw.md
https://github.swimm.io/Swimmio/templates/blob/main/.swm/doc-templates/internal-api.pqkt6.t.sw.md
https://github.swimm.io/Swimmio/templates/blob/main/.swm/doc-templates/product-requirements-document.pqkt7.t.sw.md
https://github.swimm.io/Swimmio/templates/blob/main/.swm/doc-templates/research-plan.pqkt9.t.sw.md
https://github.swimm.io/Swimmio/templates/blob/main/.swm/doc-templates/testing-overview.2emqo.t.sw.md
https://swimm.io/request-demo
https://swimm.io/community-demo

	Cover
	PDF _ A4-1
	PDF _ A4-2
	PDF _ A4-3
	PDF _ A4-4
	PDF _ A4-5
	PDF _ A4-6
	PDF _ A4-7
	PDF _ A4-8
	PDF _ A4-9
	PDF _ A4-10
	PDF _ A4-11
	PDF _ A4-12
	PDF _ A4-13
	PDF _ A4-14
	PDF _ A4-15
	PDF _ A4-16
	PDF _ A4
	10

