
Automating
legacy code
documentation

A unique approach

},

: {

:
:

{

14
15
16
17
18
19
20
21

Table of Contents

01 Executive summary 2

02 The challenge: Legacy code and the documentation deficit 3

03 Limitations of LLMs for code documentation 5

04 Swimm’s approach 7

05 Foundation for code understanding 8

06 Comparative analysis 9

07 Enterprise-ready solution 10

08 Conclusion 00

Introduction:

Legacy code poses a significant challenge for many organizations, impacting

productivity, innovation, and risk management. This whitepaper explores

Swimm's solution for automatically documenting legacy codebases, addressing

the critical need for efficient knowledge transfer and code understanding in

modern software development environments.

Executive summary
Chapter 1

In 2022, legacy code cost the United States $520 billion, underscoring why

addressing it is an executive priority for enterprises.

While not all legacy code requires modernization, effectively maintaining or

modernizing it begins with a clear understanding of your existing codebase.

2

 Krasner, Herb. “The Cost of Poor Quality Software in the US: A 2022 Report.” Consortium for
Information & Software Quality (CISQ), 15 December 2022,

https://www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf. Accessed
26 August 2024.

1

In the lifecycle of software development, today's innovative project inevitably

becomes tomorrow's legacy system. As codebases grow and evolve, they

accumulate layers of complexity, often outpacing documentation efforts. When

you start working on a codebase, there is a small team where every engineer

knows their part of the code, and probably knows enough about the other parts

of the code. Gradually, what began as a well-understood project, held together

by the shared knowledge of a core team, gradually transforms into a labyrinth of

code that few fully comprehend.

This evolution creates a knowledge deficit that poses significant challenges for

organizations. Team members come and go, taking valuable context with them,

while new developers struggle to navigate an unfamiliar landscape. The once-

clear mental map of the system becomes fragmented, with knowledge scattered

across the organization or lost entirely.

When effective documentation about the codebase exists, it serves as a written

form of the knowledge that was once held in the engineers’ minds. The problem

in legacy code is that documentation is outdated (as the code changed since it

had been written), ineffective, or doesn’t exist at all.

The challenge: Legacy code
and the documentation deficit

Chapter 2

3

The consequences

01. Onboarding inefficiency

New team members face a steep learning curve, requiring weeks or

months to become productive as they piece together understanding

of undocumented structures and flows.

4

02. Maintenance risks

Without clear documentation, even minor changes can have unforeseen

consequences, leading to increased bugs and system instability.

03. Modernization hurdles

Lack of comprehensive system understanding impedes modernization

efforts, making it difficult to refactor or replace legacy components quickly

and safely.

04. Debugging delays

Developers spend excessive time tracing issues through poorly documented

code, significantly slowing down problem resolution and increasing

downtime.

05. Innovation bottlenecks

Adding new features or integrating modern technologies becomes

increasingly challenging without a clear map of the existing codebase,

stifling innovation and agility.

5

These challenges underscore the critical need for a solution that can bridge the

gap between legacy code and modern development practices. By providing

comprehensive, up-to-date documentation, organizations can unlock the value

hidden in their legacy codebases, enabling efficient maintenance, faster

modernization efforts, and renewed innovation. The key lies in finding a way to

rapidly and accurately document existing systems, transforming impenetrable

legacy code into a well-mapped, understandable asset that can drive business

value for years to come.

Limitations of LLMs for code
documentation

Chapter 3

Effective documentation of a codebase would include both a high level overview

of the system, as well as in-depth walkthroughs of main flows in the code. The

documentation should help the reader separate the wheat from the chaff, focus

on the most important details while obscuring the rest. The documents should

describe things that are not easily deduced from looking at the code - for

example, flows that span across multiple files or repositories.

While LLMs have shown promise in various natural language tasks, they face

significant challenges when it comes to comprehensive code documentation.

01. Lack of deep code understanding

LLMs struggle to trace complex flows and understand the overall

structure of large codebases.

6

02. Difficulty in identifying important components

LLMs cannot reliably determine which parts of a codebase are most critical

or interesting without additional context.

03. Non-deterministic outputs

LLMs produce different results for the same input, making it challenging to

ensure consistent documentation.

04. Inability to perform deep Code analysis

LLMs cannot perform the deep, language-specific static analysis required to

accurately trace code flows and relationships.

05. Potential for hallucinations

LLMs may generate convincing but incorrect information, which is

particularly dangerous in a code documentation context.

The challenges

Swimm’s approach
Chapter 4

7

Deep static code analysis: Tackling language complexity

Swimm's approach to static code analysis is built on a foundation of language-

specific parsing, crucial for accurately understanding diverse codebases.

Language-specific understanding

Programming languages differ in many ways. To perform an accurate
analysis of a codebase, Swimm uses our specific plugins when
necessary in legacy code languages. The rest of the process is
language agnostic.

Cross-Language Analysi�

� Identifying logical components: Based on deep static analysis, our
cross-language algorithms identify various logical components in
any codebase. These components represent the hierarchy of the
knowledge, and as a result - the proposed hierarchy of the
documents�

� Tracking and identifying important flows: We find all flows within
the codebase, and then deterministically rank them. We create both
in-depth and high-level overview docs for the important flows.

Organization-specific analysis

When we work with enterprise clients, we also generate plugins that
match structures and files that are specific to their organizations.

Swimm Knowledge Layer:
Foundation for code
understanding

Chapter 5

8

01. Comprehensive code representation

Our knowledge base captures a complete representation of the

codebase, including both source code and any existing

documentation.

02. Language-agnostic storage

After parsing language-specific features during the initial analysis, we store

information in a unified format. This allows for consistent analysis and

documentation generation across different programming languages.

03. Efficient information retrieval

We've implemented specialized retrieval mechanisms optimized for code-

related information. It is optimized for finding relevant information from big

codebases.

04. Support for multiple use cases

The knowledge base is designed to support various applications beyond

just documentation generation. It provides the underlying data for our PR-

to-doc, Snippet-to-doc and Ask Swimm features.

This internal knowledge base allows us to perform deep analysis and generate

accurate documentation without sending any code to external servers, ensuring

the security and privacy of your codebase.

Comparative analysis
Chapter 6

Compared to traditional documentation tools and pure LLM-based solutions,

Swimm's approach offers several advantages:

Accuracy

Our deterministic analysis provides

more reliable results than pure AI-

based solutions.

Scalability

Unlike manual or semi-automated

tools, we can handle enterprise-scale

codebases efficiently. This also means

reduced costs that stem from many

LLM calls with large context.

Language coverage

Our support for legacy languages

sets us apart.

Integration of AI and traditional
techniques

We leverage the strengths of both

approaches, using AI for natural

language generation while relying on

proven static analysis techniques for

code understanding.

9

VS

Comparative analysis

Enterprise-ready solution
Chapter 7

10

01. Security and privacy

Our system processes all code locally, ensuring that sensitive

intellectual property never leaves your infrastructure. For

organizations with strict data governance policies, we offer on-

premises deployment options, including the ability to use your own

LLM instances.

02. Scalability and performance

Designed to handle enterprise-scale projects, Swimm can generate

thousands of documents simultaneously, efficiently processing millions of

lines of code.

03. Comprehensive language support

Our language-agnostic approach supports a wide range of technologies,

including legacy languages like COBOL. This ensures comprehensive

documentation coverage across diverse technology stacks. We can add

support for additional languages used by our clients.

04. Customization

Recognizing that each organization has unique documentation standards,

we enable customizable document templates to align with your specific

requirements.

By addressing these key enterprise concerns, Swimm enables organizations

to leverage advanced AI-assisted documentation while maintaining

complete control over their codebase and infrastructure.

Swimm's Auto-docs feature is engineered to meet the demanding requirements

of large-scale enterprises, offering a secure, scalable, and flexible

documentation solution for legacy codebases.

Conclusion
Chapter 8

Swimm's Auto-docs feature represents a significant advancement in automated

code documentation, particularly for legacy systems. Bx This approach not only

preserves critical knowledge but also enables organizations to transform their

legacy code from a liability into a valuable, understandable asset.

11

Learn more about Swimm

Swimm helps enterprise developers quickly understand big,

complex codebases—and automatically captures knowledge to

fill in any documentation gaps.

https://swimm.io/

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

