
Shortcomings of
traditional COBOL
business rule
extraction methods

Primer

Legacy COBOL applications remain the operational heart of global commerce,

processing trillions of dollars daily across finance, insurance, and government

sectors. Decades of investment are embedded within these systems, primarily as

invaluable, often undocumented "business rules" that dictate core operations.

For example, a loan risk assessment may rely on dozens—or even thousands—

of variables to determine whether a financial institution should issue a loan. One

such rule might be as simple as "if the applicant's debt-to-income ratio exceeds

43%, flag for manual review" or as complex as a multi-tiered algorithm weighing

credit history, employment stability, and regional economic forecasts.

Understanding and extracting these rules—which can number in the hundreds

even in moderately sized applications (e.g., over 800 rules in a 30,000-line

program)—is critical for modernization, compliance, agility, and risk mitigation.

This need is increasingly urgent as the experienced COBOL workforce retires,

taking critical system knowledge with them and making manual analysis

unsustainable and prone to error.

While common automated approaches like static code analysis, Large

Language Models (LLMs), and AI code assistants offer potential assistance, they

possess fundamental limitations when faced with the complexity, scale, and

environmental dependencies of real-world COBOL systems.

Executive overview

2

The deep challenge: The nature of
business rules in COBOL
Extracting business rules is inherently difficult because:

Rules are Implicit and Distributed: Many rules aren't coded as simple

IF condition THEN rule. They are embedded in data transformations,

program control flow, file processing logic, error handling routines, and

interactions between different programs and system components.

Logic is often scattered across the system.

3

Comparison of common automated
approaches for COBOL business
rule extraction

Environment Dependence: The behavior of a rule can change based

on runtime parameters, JCL overrides, control cards, or specific values

within input data files – factors outside the COBOL source code itself.

Core functionality needed

Parse COBOL syntax & structure Good

Partial

Partial

Partial

Partial

Partial

Partial

Partial

Partial

Poor

Poor

Poor

Poor

No

No No

Analyze complex control flow

Trace data flows across programs

Interpret external dependencies
(JCL etc.)

Identify semantic meaning /
business intent

Handle ambiguity & legacy
code quirks

Provide holistic system view

Validate extracted rules accuracy

Static analysis LLMs / AI assistants

¹ LLMs/AI Assistants show partial ability but often struggle with COBOL specifics, lack deep context, and can hallucinate, requiring
significant human validation.

2 Validation requires execution context or deep domain expertise, which these approaches lack inherently.

¹ Table Value Definitions:

� Good: The approach generally handles this functionality well for its intended scope within the context of COBOL analysis.

4

� Partial: The approach has some capability but faces significant limitations, inaccuracies, or requires heavy
human intervention/validation for effective use in business rule extraction.

� Poor: The approach is generally unsuitable or ineffective for this functionality in this context.

� No: The approach inherently does not address this functionality.

The limits of static analysis tools

Static analysis tools examine source code without executing it. When it

comes to extracting business rules from COBOL, they face significant

hurdles�

�� Syntax over semantics: These tools primarily understand code structure,

not the underlying business meaning or intent. They can parse an IF

statement but cannot inherently know if that IF statement represents a

specific business policy (e.g., "Apply a 10% discount if customer type is

'PREMIUM'"), or a technical check (e.g., “IF you got an ERROR value, set

an error flag”).

�� Ignoring the ecosystem: Business logic in mainframe

environments doesn't always reside purely within COBOL

programs. They may depend heavily on external components that

cause problems for static analyzers that don't interpret in context

(some static analyzers may rely on external resources as well):

JCL (Job Control Language): Defines program execution flow,

parameters, file handling, and conditional execution crucial for

understanding batch processes.

Data: Rules are often implicit in data structures (copybooks), file

formats (VSAM, sequential files), database schemas (DB2, IMS), and

specific data values used in conditional logic.

5

System utilities & schedulers: External utilities and job scheduling
systems dictate when and how processes run, affecting the overall
business flow.

Configurations & control cards: Parameters external to the code often
modify program behavior and implement specific rules.

Example: Rule Dependent on External Parameter ENVIRONMENT DIVISION. 

 INPUT-OUTPUT SECTION. 
 FILE-CONTROL. 
 SELECT OPTIONAL PARM-FILE ASSIGN TO "PARMIN" 
 FILE STATUS IS WS-PARM-STATUS. 
 DATA DIVISION. 
 FILE SECTION. 
 FD PARM-FILE. 
 01 PARM-RECORD PIC X(10). 
 WORKING-STORAGE SECTION. 
 01 WS-PARM-STATUS PIC XX. 
 01 WS-PROCESS-FLAG PIC X VALUE 'N'. 
 01 WS-DISCOUNT-RATE PIC 9V99 VALUE 0.05. 
 01 WS-PARM-VALUE PIC X(10).  

 PROCEDURE DIVISION. 
 OPEN INPUT PARM-FILE. 
 IF WS-PARM-STATUS = '00' THEN 
 READ PARM-FILE INTO WS-PARM-VALUE 
 IF WS-PARM-VALUE = 'REGION-EAST' THEN 
 MOVE 0.10 TO WS-DISCOUNT-RATE
 

 END-IF 
 END-IF. 
 CLOSE PARM-FILE.  

 IF WS-DISCOUNT-RATE > 0.05 THEN 
 PERFORM APPLY-SPECIAL-DISCOUNT 
 ELSE 
 PERFORM APPLY-STANDARD-DISCOUNT 
 END-IF. 
 *> ... rest of program ... 
 STOP RUN.  

 APPLY-SPECIAL-DISCOUNT. 
 *> Apply discount using WS-DISCOUNT-RATE (e.g., 10%) 
 DISPLAY 'Applying Special Discount: ' WS-DISCOUNT-RATE. 
 APPLY-STANDARD-DISCOUNT. 
 *> Apply discount using WS-DISCOUNT-RATE (e.g., 5%) 
 DISPLAY 'Applying Standard Discount: ' WS-DISCOUNT-RATE.

6

�� Complexity and obfuscation:

Real-world COBOL codebases, often decades old, present significant

challenges:

Summary:

A static analyzer sees the IF WS-DISCOUNT-RATE > 0.05 condition. It

might trace the MOVE 0.10 but cannot know why the rate changes. The

actual business rule ("Apply a 10% discount for the Eastern region,

otherwise 5%") depends on the content of the external PARMIN file, which

is determined at runtime (likely via JCL) and invisible to the static analysis

of the COBOL code alone.

Accumulated changes: Years of patches, workarounds, and

modifications by different developers lead to inconsistent styles and

complex, hard-to-follow logic.

Archaic constructs: Heavy use of GO TO, altered GO TO, complex

PERFORM structures, and large monolithic programs obscure the

actual flow of business logic. (See COBOL landmines for an example)

"Dead" code: Code may appear unused but could be activated under

specific, rare conditions defined externally.

Lack of business context: Tools see variable names (often cryptic

like WRK-FLG-01), arithmetic operations, and data movements.

They don't understand the business concepts these represent (e.g.,

"Eligibility Flag for Special Promotion") or why a calculation is

performed.

https://swimm.io/blog/the-hidden-landmine-in-cobols-perform-statement-a-control-flow-puzzle

7

The limits of Large Language
Models (LLMs) and AI coding
assistants
LLMs have shown promise in understanding and generating human
language and code. However, applying them to extract nuanced business
rules from legacy COBOL has critical limitations. Similarly AI code
assistants (integrated into developer IDEs for code completion, generation,
and local refactoring) represent a specific application of LLMs, but they
also face distinct limitations regarding deep business rule extraction from
COBOL�

�� Plausible but incorrect ("Hallucination"): LLMs can generate
explanations of COBOL code that sound reasonable but are subtly or
entirely wrong. They may misinterpret complex logic, misunderstand
archaic syntax, or invent connections that don't exist, especially with
non-standard or heavily modified code.

Example: Ambiguous Flag Logic WORKING-STORAGE SECTION.
 

 01 CUSTOMER-RECORD. 
 05 CUST-ID PIC 9(10). 
 05 CUST-TYPE PIC X. *> 'S'=Standard, 'P'=Premium,
'G'=Gov 
 05 CUST-STATUS PIC 9. *> 1=Active, 5=Hold, 9=Inactive 
 05 CUST-FLAG-XYZ PIC X. *> Set by PROGXYZ based on
complex criteria  

 01 TRANSACTION-RECORD. 
 05 TRANS-AMOUNT PIC S9(7)V99.
 

 05 TRANS-CODE PIC XX.  

 01 WS-APPROVAL-NEEDED PIC X VALUE 'N'.  

 PROCEDURE DIVISION. 
 *> ... code reads customer and transaction records ...  

 EVALUATE TRUE 
 WHEN CUST-TYPE = 'G' AND CUST-STATUS = 1 
 CONTINUE *> Government always approved 
 WHEN CUST-TYPE = 'P' AND TRANS-AMOUNT > 10000.00 
 MOVE 'Y' TO WS-APPROVAL-NEEDED 
 WHEN CUST-FLAG-XYZ = 'A' AND TRANS-CODE = 'W1' 
 MOVE 'Y' TO WS-APPROVAL-NEEDED

8

WHEN OTHER

 IF TRANS-AMOUNT > 5000.00 THEN 
 MOVE 'Y' TO WS-APPROVAL-NEEDED 
 END-IF 
 END-EVALUATE.  

 IF WS-APPROVAL-NEEDED = 'Y' THEN 
 PERFORM ROUTE-FOR-MANUAL-APPROVAL 
 ELSE 
 PERFORM PROCESS-AUTOMATICALLY 
 END-IF. 
 *> ... rest of program ...

Summary:

An LLM might explain each WHEN condition correctly in isolation.

However, understanding the combined business rule for requiring manual

approval is complex. Crucially, the meaning of CUST-FLAG-XYZ = 'A'

combined with TRANS-CODE = 'W1' is entirely dependent on external

domain knowledge (what does PROGXYZ do? What does flag 'A' signify?

What is transaction 'W1'?). An LLM lacking this specific context might

guess ("Flag XYZ likely indicates high risk") or hallucinate a plausible but

incorrect business reason, failing to capture the precise rule ("Approval

needed for wire transfers over $5000, Premium customer wires over

$10000, or any 'W1' transaction for customers flagged 'A' by the external

risk assessment program PROGXYZ, unless it's an active Government

customer").

When it comes to code, in many cases there is a deterministic answer - a

single code flow that will be executed according to the instructions. Static

analysis excels at that, while LLMs fail in resolving ambiguities and

complex code flows.

9

�� Lack of deep context:

Domain specificity: LLMs lack the specific, ingrained business

knowledge of a particular organization or industry vertical embedded

implicitly in the code and its surrounding processes.

Scale and interconnection: Understanding rules often requires

analyzing millions of lines of code across hundreds or thousands of

programs, JCL scripts, copybooks, and database interactions – a scale

and complexity that can exceed practical LLM context windows and

processing, leading to fragmented understanding.

�� Weak COBOL understanding (Training data gap):

AI assistants and LLMs are trained predominantly on vast repositories of

modern programming languages (like Python, Java, JavaScript) available

publicly (e.g., GitHub). Publicly available COBOL code is scarce compared to

proprietary codebases. This training data disparity means these tools often

struggle with:

COBOL's unique syntax and procedural structure.

Archaic or vendor-specific COBOL dialects and idioms.

Generating accurate, or even compilable, COBOL code suggestions.

�� Static viewpoint:

Like static analyzers, LLMs don't execute code. They cannot observe runtime

behavior, debug scenarios, or understand how input data values dynamically

alter execution paths, which is often essential for rule validation.

�� Sensitivity to code quality:

LLMs perform best on clean, well-documented code. Legacy COBOL is often

the opposite, hindering the LLM's ability to accurately parse and interpret it.

10

�� Focus on generation, not discovery:

AI Assistants are primarily designed to write new code or complete/refactor

small, existing snippets based on local context. They are not built for the deep,

system-wide analysis required to discover complex, embedded business rules

across a large legacy application.

�� Limited context scope:

AI assistants typically analyze only the code in the current file, immediately

related open files, or user declared files. They lack the broader application-level

view needed to understand rules that span multiple COBOL programs,

copybooks, JCL procedures, and external dependencies. They cannot easily

trace complex data flows or control logic across the entire system.

�� Surface-level explanations:

While AI assistants might "explain" a highlighted COBOL code block, this

explanation is often syntactic ("this code moves data from A to B if C is true").

It typically fails to capture the business significance (the "why") or the

downstream impacts of that logic within the larger business process.

Conclusion and a better way

Using static analysis alone for extracting business rules from aging and

complex COBOL systems often yields unreliable results, leading to project

delays and flawed execution. Similarly, relying solely on LLMs carries the

possibly higher risk of plausible but wrong outputs.

Swimm offers a modern solution that overcomes these limitations by

intelligently combining a deterministic static analysis engine with the

power of off-the-shelf LLMs. This integrated approach at each step in the

process enables the accurate extraction of business rules from even the

11

largest and most intricate COBOL codebases.

The result is comprehensive and trustworthy documentation, freeing

critical engineering resources from the time-consuming task of

understanding legacy systems and allowing them to advance

organizational priorities.

Learn more about Swimm

Swimm is an AI solution that accelerates mainframe

modernization

https://swimm.io/

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

