
Accelerating COBOL
modernization - closing
the knowledge gap

Whitepaper

Introduction: The COBOL
knowledge gap in modernization

2

Since its initial development in the 1950s, COBOL has expanded to hundreds of

versions and over 200 billion lines of code powering critical systems in banking,

insurance, government, and beyond.

Many enterprises face pressure to modernize part or all of their COBOL

applications. Yet, despite significant investment, mainframe modernization

projects are notoriously difficult. One industry survey revealed 79% of

modernization initiatives failed. A second Gartner study found that 82% of

initiatives take longer than expected.

The major contributing reason is the “knowledge gap” that exists in COBOL

which causes unexpected delays and risks due to missing information.  

The main components of the gap are twofold

 Application understanding gap: Knowing all the components, connections,

where and what are the dependencies, and how it works from business and

technical perspective

 Skills gaps: Having enough subject matter experts to analyze the code and

institutionalizing expert’s knowledge

These gaps make it notoriously difficult to successfully modernize or even

maintain applications. Swimm uses new techniques intertwining static analysis

with generative AI to eliminate the understanding gap and reduce critical

dependencies on skilled labor.

3

At a high level, a modernization process involves an overall map of the

application, understanding functionality, building a spec, developing the

new code, and validating the code before and during transitions.  

At each of these stages application understanding is a core outcome for a

successful migration.

Map Understand/Plan Develop Validate

What do we have?
What part should
we modernize?
What is the right
modernization path?
Where are the
bottlenecks to
improving
performance?
Where do we want
to change or add
functionality?

What are the
business rules in the
application? What
dependencies exist
for any given part of
the application and
what do they do?
How do users
experience the
application and
what are the related
flows in the code?
What are the
product
requirements for the
modernized
application?

How can we
generate code with
AI with all the
relevant context?

What tests do we
need to run to cover
all potential cases
and ensure a
successful
transition? What
features do we need
to ensure are
implemented?

A Understand B

Application understanding

Put simply - going from A to B requires understanding your application.

4

 Scattered business logic and rules: Business rules— if/then/else logic,

constraints, and actions governing business processes—are spread across

millions of lines of code, intertwined with technical logic (e.g., database

access via CICS or IMS). For example, a rule like “High-value transfers require

verification” may span multiple COBOL programs, making it hard to trace

 Complex control flow: COBOL’s use of PERFORM statements, GOTOs, and

dynamic calls (e.g., EXEC CICS XCTL PROGRAM(CDEMO-TO-PROGRAM))

creates intricate execution paths that are difficult to follow

 Technical environment: A significant portion of COBOL code handles

infrastructure (e.g., DB2, VSAM datasets), obscuring business logic

 Cryptic naming: Variable names like WS-V-02 or ACTIDIN often lack

descriptive meaning, complicating analysis

 Obsolete logic: Legacy systems may include outdated rules no longer aligned

with current policies, requiring careful validation. Some of the existing code is

actually “dead code”, as it is no longer executed, but this is challenging to

understand from the code itself

 Knowledge loss: Original developers and business analysts have often left,

leaving no institutional memory - i.e. documentation - to explain the code.

As anyone that has gone through modernization knows - and those about to

will know - building an understanding for an entire application isn’t easy.

Key challenges include:

5

with cost overruns and timeline extensions. It usually involves many people

who first have to go through the existing system and understand how it

operates. Some organizations rely on their own engineers, who are then

unable to use their precious time on developing new features.

Other organizations outsource this task, which often leads to challenges as

the outsource task force does not fully comprehend the specific business logic

and needs of the codebase.

Existing static analysis approaches and new attempts to use generative AI to

automatically bridge the gap but fall significantly short of an effective

solution. In the table below, we’ve broken down the strengths and gaps of

using these approaches during the critical step of extracting business rules.

There are 3 main approaches that we’ve observed to improve understanding

of complex applications

 Manual engineering effor

 Static analysis tool

 Generative AI

The first labor intensive approach has a poor track record of failures along

An overview of existing attempts
to close the gap

For a deeper dive into these

shortcomings, read our primer:

Shortcomings of traditional COBOL

business rule extraction methods 

https://25477114.fs1.hubspotusercontent-eu1.net/hubfs/25477114/Gated%20Documents/Primer:%20Shortcomings%20of%20traditional%20COBOL%20business%20rule%20extraction%20methods.pdf
https://25477114.fs1.hubspotusercontent-eu1.net/hubfs/25477114/Gated%20Documents/Primer:%20Shortcomings%20of%20traditional%20COBOL%20business%20rule%20extraction%20methods.pdf

6

Swimm’s approach to application
understanding

Exceptional results intertwining static analysis and LLMs

Swimm uses proprietary static analysis with LLMs first to break down a

codebase into knowledge artifacts. A knowledge artifact can be as small as a

variable or a paragraph, or bigger such as a full control flow, process, job, or

other construct that can reside in a single program or expressed across the

entire codebase.

These artifacts represent the application functionality. Brought together these

artifacts make up a local knowledge base, that is Swimm's internal

Core functionality needed

Parse COBOL syntax & structure Good

Partial

Partial

Partial

Partial

Partial

Partial

Partial

Partial

Poor

Poor

Poor

Poor

No

No No

Analyze complex control flow

Trace data flows across programs

Interpret external dependencies
(JCL etc.)

Identify semantic meaning /
business intent

Handle ambiguity & legacy
code quirks

Provide holistic system view

Validate extracted rules accuracy

Static analysis LLMs / AI assistants

Comparison of common automated approaches for cobol business rule extraction

7

research-based approach - evaluate new ideas and apply quality assurance

since we know the expected output at each stage. LLMs alone do not

inherently allow this. By relying on static analysis, we can ensure that the

output is always correct

 Optimized for LLMs: LLMs aren't designed for analysis. They are

probabilistic at their core. Over providing them with too much context has

negative returns for quality and reliability. Our approach enables us to

provide the exact context needed to each step in the process

 Comprehensive and scalable: We can generate information for massive

codebases in hours without losing details since we shared the codebase

and individually build only the necessary information.

Swimm also provides additional benefits for a holistic solution to solving the

knowledge gap

 Ensures up to date knowledge: Code continues to evolve as regulatory or

product requirements continue to change even during a modernization

project. Swimm connects code to each artifact in the knowledge base,

representation of the codebase.Swimm then turns these artifacts into a

comprehensive understanding of the application for architects, engineers,

and business analysts.

Architectural overview

Business rules

Documentation

Code walkthroughs

Reliably turn code into insights

Language parser Customer plugin

Static
analysis

LLM

8

Swimm surfaces important insights based on the core aspects of

understanding your application while enabling deep diving into any part of

the code as necessary.

Insights that matter

 tracks changes to the code, and continuously updates the knowledge

base as needed. Significant changes to the codebase can be escalated to

engineers for adding additional insights that may not be apparent in the

code. By continuously updating the knowledge base, rather than

regenerating it, Swimm can retain the unique knowledge added by

engineers or business analysts even as the code evolves

 Verifiable: Engineers can easily click into the code itself from Swimm

documents enabling them to verify key details quickly and efficiently

 Allows additional insights: Swimm documents are easily edited in the

IDE allowing experts to further enrich documents as necessary. Since

code is directly linked to relevant documentation it is trivial to know

exactly where to add more insight. When a human adds additional

insights, Swimm will not overwrite them but will alert you if the

underlying code they refer to changes.

9

Map

Visibility into the entire application in an easy to comprehend format is essential

to understand what exists and how it is connected.

Swimm surfaces all the key elements of the application. Many applications were

written for technical, industry, or business reasons with cryptic naming

conventions that make applications particularly difficult to visualize at both high

levels and when diving into the code itself.

Swimm organizes and displays programs, jobs, screens, and flows with natural

language names and overview descriptions. Connections between the parts of

the application are shown along with clear dependency diagrams and the ability

to further deep dive into any part of the applications to peel away its layers.

Understand

Understanding the entirety of the application requires the easy ability to

understand core entities and the business rules that run behind them.

Map Understand/Plan Develop Validate

What do we have?
What part should
we modernize?
What is the right
modernization path?
Where are the
bottlenecks to
improving
performance?
Where do we want
to change or add
functionality?

What are the
business rules in the
application? What
dependencies exist
for any given part of
the application and
what do they do?
How do users
experience the
application and
what are the related
flows in the code?
What are the
product
requirements for the
modernized
application?

How can we
generate code with
AI with all the
relevant context?

What tests do we
need to run to cover
all potential cases
and ensure a
successful
transition? What
features do we need
to ensure are
implemented?

Returning to our core modernization process:

10

Business rules

Extracting all of the business rules from an application is the single most

important action once the decision has been made to modernize the

application into a new application. Before we discuss business rules at

length, let's define the meaning of business rules since the term can be

used in different contexts.  

There have been many attempts to define "business rules" formally (for

example, by the), which stated that a business rule

is "a statement that defines or constrains some aspect of the business".

Some business rules embedded in the application protect organizations

from legal or regulatory consequences. For example, the collection of a tax

like a VAT or customer identification in Know Your Customer laws.

 Business Rules Group

There are lots of business rules are embedded in code 

“Information systems normally implement a large number of

business rules, for example, the 627 business rules applied

in a 12,000-line COBOL application and the 809 in a

30,000-line COBOL application”

In essence, business rules are the specific constraints, conditions, and actions

embedded within a software system that reflect the policies and procedures of

an organization. Legacy systems contain strategic business rules that govern the

business processes, whether these rules are explicit or implicit.

Joubert, Pieter, Jan Hendrik Kroeze and Carina de Villiers. “A grammar of business rules in Information
Systems.” The Journal for Transdisciplinary Research in Southern Africa 9 (2013): 36.

https://www.businessrulesgroup.org/

11

The concept of business rule extraction has been heavily covered in academic

research since the 1990s. Many companies in the 2000s from IBM to smaller

vendors have recognized the importance of business rules to modernization

projects and attempted to bring products to market to automatically extract

them from code. A review of the shortcomings of popular approaches was

discussed previously in this whitepaper.   

Automatically extracting business rules is difficult. Only through adding the

power of LLMs into the process with static analysis has it been possible to

overcome the technical challenges and approach the non-technical.

Technical challenge

 Scattered and Intertwined Logic: In COBOL, tracking the flow of logic is

challenging, both within a single file and across multiple files. Furthermore,

this logic is frequently intertwined with presentation logic, technical code, and

auxiliary code. COBOL programs can have complex control flow structures,

including deep calling hierarchies (PERFORMs) and sometimes GOTOs,

making it hard to trace the sequence of operations that constitute a business

rule

 Technical Environment Complexity: A significant portion of the COBOL code

(as much as 70-80% according to) is dedicated to the technical

environment and infrastructure (e.g., IMS, CICS, DB2) rather than the core

business logic and needs to be filtered out. Specifically, distinguishing

between data variables that are relevant to the business and those that are

part of the technical framework is crucial but difficult.

 Naming Conventions: It is common for COBOL code to include cryptic

variable or paragraph names that do not provide any insight into the purpose

of the code.

 some sources

https://research.vu.nl/ws/portalfiles/portal/231254036/From_COBOL_to_Business_Rules_Extracting_Business_Rules_from_Legacy_Code.pdf

12

Non-technical challenge

 Obsolete Business Logic: Legacy systems may contain obsolete business logic

that was never removed from the codebase. Identifying and distinguishing this

from current, active rules adds to the difficulty of extraction

 Business Knowledge Loss: Over time, the original developers and business

analysts who understood the rationale behind certain rules may have left the

organization making it challenging to validate extracted rules.

Business Rule Extraction with Swimm

Swimm overcomes the inherent challenges in business rule extraction with a

symbiotic approach that fuses the deterministic precision of static analysis with the

semantic understanding of Large Language Models (LLMs). This hybrid model

ensures accuracy, completeness, and traceability of business rules

 Foundation of Static Analysis: The process begins with Swimm's proprietary

static analysis engine mapping the entire application. It meticulously traces data

flows across programs, deciphers complex control flows (including GOTOs and

PERFORMs), and filters out technical "noise" from the underlying business logic.

This creates a complete, accurate, and structured knowledge graph of the

application—a reliable foundation that is impossible for an LLM to build on its

own

 Context-Rich AI Enrichment: With this structured blueprint in place, Swimm

then leverages an LLM. Instead of pointing the AI at millions of lines of raw,

ambiguous code, Swimm provides it with precise, context-rich snippets from the

knowledge graph. This targeted approach prevents AI "hallucinations" and

allows the LLM to do what it does best: provide natural language explanations

from clear instructions.

13

The result is a comprehensive and verifiable catalog of business rules. Each rule is

presented in plain English, linked directly back to the specific lines of code it came

from, and accompanied by diagrams illustrating its logic flow. This allows analysts

to not only understand a rule like “A premium customer's credit limit is increased by

15%” but to instantly verify its implementation in the source code, ensuring

accuracy and building trust in the modernization process.

Premium Calculation

Premium is calculated according to the following formula:

Fire Premium = Risk Score * * Peril Score * Discount Factor

CrimePremium = Risk Score * * Peril Score * Discount Factor

FloodPremium = Risk Score * * Peril Score * Discount Factor

WeatherPremium = Risk Score * * Peril Score * Discount Factor

Discount Factor is set to if all perils are in effect.

0.8

0.6

1.2

0.9

Core application functionality

While extracting business rules, modernization teams also need to ensure a deep

knowledge of the workings of the application to write the specifications of the

modern application.

Mainframe applications can be broken down into three core entities which are used

to understand the application as a whole

 Online operations: Screens and the workflows they interact with

 Batch operations: Jobs, often written in JCL, that handle high-volume,  

repetitive tasks

 Utilities: Copybooks and complex shared logic

14

To understand an application, each of these can be further broken down into the

most useful questions

 User screens: What screens are available to the user? What business rules

apply to each screen

 Screen interactions: What actions can be performed on each screen? What are

the limitations and validations for each screen? What happens when a user

interacts with the screen? How is the underlying logic implemented

 Batch operations: What batch jobs exist, and when do they run? What files are

used as input? How are records parsed and processed? What fields impact

downstream calculations

 Batch job logic: What does each batch job do? What business rules are involved

in a batch job

 Shared logic: Are they complex routines used across multiple operations? If so,

what do they handle?

Swimm delivers structured insights to answer each of these questions while also

being flexible to dive deeper into any element an analyst or engineer needs to

further focus on.

Screens

Swimm reconstructs screen visuals from COBOL BMS and related code. These

visual representations are accompanied by explanations of the purpose of the

screen along with drill downs into every consideration involved in the screen.

 Understand the screen’s purpos

 Input limitations and validation

 Understanding user interactions and constraint

 Step-by-step code walkthrough

 Dependency mapping

15

Just seeing a screen already provides significant insight. Swimm’s insights go far

further giving clarity to any line of questions relevant to modernizing or working

with the screen.  

Batch Operations

While individual screens provide critical insight into a mainframe application, much

of the core business logic resides in batch operations. These jobs process large

volumes of data, execute key financial calculations, and generate essential system

updates.

Swimm enables teams to understand batch jobs from high level overviews to

uncovering layered flows and business rules.

16

Customizable, secure, fast -
enterprise ready

In order for an Application Understanding Platform to successfully close the

knowledge gap, it needs to work on real COBOL applications in security conscious

environments.

Language and customer frameworks support

No two COBOL applications are the same. Firstly, there are approximately 300

dialects of COBOL in use. In addition, when many applications were written,

standardization of solutions to common problems like open source libraries and

question answer services like StackOverflow didn’t exist.

The developers of the codebase had to reinvent the wheel every time they needed

to do something that is now a one-liner in a modern language. They had to write

their own libraries, and their own APIs. As a result, each COBOL codebase is unique

and complex.

 Decision logic flowchart

 Critical path identificatio

 Input file definition

 File-handling routine trace

 Exception handling routines

R. Lammel and C. Verhoef, "Cracking the 500-language problem," in IEEE Software, vol. 18, no. 6, pp.
78-88, Nov.-Dec. 2001, doi: 10.1109/52.965809. keywords: {Computer languages;Lab-on-a-chip;Software
tools;Impedance;Investments;Helium;Books;Costs;Assembly;Search engines},

17

 On premise solution - run Swimm without leaving your networ

 Use your own LLM - Swimm can use a customer’s internally approved LLM

infrastructure

 Certified security - SOC 2 & ISO 27001 complian

 No infrastructure - Swimm runs on a developer’s laptop requiring no custom

hardware (*a docker container with credentials is required for customers using

their own LLM)

Security

Many COBOL applications underpin highly sensitive infrastructure including global

finance and government. Swimm is built from a security 1st perspective.

Swimm’s architecture enables customization to a specific customer’s codebase and

frameworks. Unlike training an LLM, this process does not require access to a

company’s IP. To accomplish this, all access to the company’s codebase is done via

a local machine on the company’s network, and communication is done only with

the company’s LLM instance. No code or artifacts ever leave the company’s

network.

18

See: Nikiema, S. L., Samhi, J., Kaboré, A. K., Klein, J., & Bissyandé, T. F. (2025). The Code Barrier: What

LLMs Actually Understand?. arXiv preprint arXiv:2504.10557.

Haroon, S., Khan, A. F., Humayun, A., Gill, W., Amjad, A. H., Butt, A. R., ... & Gulzar, M. A. (2025). How
Accurately Do Large Language Models Understand Code?. arXiv preprint arXiv:2504.04372.

1

The future of mainframe modernization hinges on solving a fundamental problem:

understanding. Without a clear, comprehensive grasp of how COBOL applications

work—across screens, jobs, flows, and deeply embedded business logic—

modernization efforts stall.

Swimm is closing the knowledge gap with a new approach: by fusing deterministic

static analysis with generative AI for a reliable, cost effective path forward.

Swimm empowers teams to map, understand, and validate their applications in

hours—not months. Modernizing COBOL isn’t just about rewriting code. It’s about

reclaiming the institutional knowledge locked inside it. Swimm is how you do that—

accurately, securely, and at scale.

Conclusion: Closing the
knowledge gap

Close the knowledge gap today

Swimm is an Application Understanding Platform for legacy and

mainframe applications

https://swimm.io/

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

