
The code

documentation

handbook

Best practices for

effective documentation

},

: {

:
:

{

14
15
16
17
18
19
20
21

Developers and development teams both deserve and need good
documentation. In fact, GitHub reports that developers are 50% more
productive when documentation is accessible and available.

With effective documentation in place:

 New developers integrate seamlessly, reducing the learning curve
 Teams remain on the same page, promoting agility
 Knowledge isn't confined to a single individual; it's shared and

available to all.

Yet, in today's fast-paced software development environment, a significant
gap exists. Developers often grapple with outdated or insufficient
documentation, and many lack the right tools or methods to create valuable
docs. This not only affects their onboarding into new projects but also
hampers their overall efficiency and the quality of the software they
produce.

In this guide, we’ll cover why it’s important to document your codebase and
will share practical strategies on how you can build a culture of
documentation within your organization, ensuring that code knowledge is
always within everyone’s reach.

Introduction

Table of Contents

Part 1 - Why document your code? 4

Part 2 - Code documentation challenges 8

Part 3 - 13 tips for writing technical documentation 10

Part 4 - 5 documentation tools you should know about 14

Part 5 - Writing an effective code doc in 5 steps with Swimm 17

BONUS - 2 templates to help you get started 19

4

Why document
your code?

Documentation is an investment worth making. Producing quality
documentation takes time, but it’s an investment that pays dividends time
and again.

Documentation increases developer productivity
Despite being critical to onboarding new developers, improving code quality,
and creating shared understanding for the whole team, documentation is often
an under-resourced area of projects.

GitHub’s research shows that easily sourced documentation translates to a
50% productivity boost for developers. Good documentation removes
ambiguity and friction, getting the whole team on the same page.

Documentation contributes to building

strong team cultures

GitHub’s report went on to highlight the importance of good information flow
in building trust and promoting developer satisfaction. Particularly in our
current reality of geographically dispersed teams and remote working
environments, documentation plays a critical role in ensuring that knowledge
about your codebase flows among team members – both current and future.

We’re also debunking the

myths about why devs avoid

documentation

Chapter 1

5

Documentation is critical for onboarding new
developers to the team

In research conducted by Harvard Business School, executives acknowledged
that their companies could do better in onboarding new employees. In fact, a
recent survey found that 52% of new hires feel undertrained following
onboarding.

This perspective is confirmed by Gallup research of employees themselves,
which found that only 12% of employees strongly agree that their organization
does a great job of onboarding new employees.

Documentation contributes to building

strong team cultures

GitHub’s report went on to highlight the importance of good information flow
in building trust and promoting developer satisfaction. Particularly in our
current reality of geographically dispersed teams and remote working
environments, documentation plays a critical role in ensuring that knowledge
about your codebase flows among team members – both current and future.

Successful onboarding follows a two-step methodology:

 Start with a high-level overview of your codebase. This step
provides devs with the knowledge and information they need
to get started.

Tip: Use Swimm playlists. Playlists are an ordered sequence of
documents and other resources.

 Learn as you go. Once devs have the full picture, they should
be able to easily access the resources needed to get the job
done.

Tip: Swimm’s IDE plugin eliminates the need to look for
documentation. Discover documentation that already exists
alongside code.

https://hbswk.hbs.edu/item/how-remote-work-changes-what-we-think-about-onboarding
https://hbr.org/2023/07/a-guide-to-onboarding-new-hires-for-first-time-managers
https://www.gallup.com/workplace/235121/why-onboarding-experience-key-retention.aspx

6

Myths and misconceptions
Let’s be real for a second: most developers will admit that documenting code is
one of the least enjoyable parts of the job.

This aversion is understandable, yet it often stems from a lack of appropriate
tools used by teams to facilitate the creation of effective code docs. Let’s
address and clarify the two most prevalent misconceptions regarding
documentation:

Myth #1: Good code documents itself

By its nature, code has limitations in terms of its expressiveness. While it’s true
that well-written code inherently demonstrates what it accomplishes,
comprehensive documentation delves deeper, exemplifying the methods and
rationale behind the code. It clarifies how the code achieves its purpose and,
crucially, why specific coding approaches were chosen over others. Simply put,
it focuses on the how and the why.

Relying on the code to explain itself fails to impart a full understanding of the
underlying logic and nuances. Therefore, irrespective of code quality, it is vital
that documentation fulfills this role, providing the necessary context and
details.

While writing clean, concise, and readable code is highly beneficial and can
reduce the amount of documentation required, it cannot replace the need for
explicit documentation, especially in more complex and nuanced aspects of
software development (think: complex logic and algorithms, large codebases,
architecture changes).

Myth #2: There’s just no time

Creating code documentation isn’t just a time-consuming formality. It’s a
strategic decision that amplifies long-term efficiency and success for
development teams. Not only does good documentation ensure clarity and
consistency in current projects, but it also provides clear guidelines for the
future.

7

Proper documentation streamlines communication, aligning everyone’s
objectives and reducing misunderstandings. It safeguards knowledge, ensuring
valuable insights aren't lost. And when developers spend less time deciphering
complex code, they can focus more on innovation and coding itself, maximizing
productivity and developer experience.

So while it might seem that allocating development hours to documentation at
the expense of writing code is a diversion of resources, it’s actually a strategic
investment that yields substantial returns for the whole team.

Myth #3: You need to be a good writer to create effective documentation

You don’t have to be the next Shakespeare to write good code documentation.
The objective is to communicate information in a straightforward manner. An
effective code doc focuses on the accuracy and comprehensiveness of technical
details rather than on stylistic elements.

A deep understanding of the code and its underlying principles is key.  
It facilitates the accurate conveyance of technical nuances and mitigates
misunderstandings. The essence of effective documentation lies in clear,
concise, and correct representation of technical information.  
While good writing can be an asset, it is the clear and organized presentation
of relevant information that defines the effectiveness of documentation in a
technical context.

8

 Code is non-linear

Not all code follows a step-by-step paradigm, and the assembly order is not
always clear when documenting code. Things that appear at the top, such as
variables, may relate to the functionality at the bottom. Functions defined at
the end of the code could be executed in another block of code in the middle.
This becomes more complex as code flows span across multiple repositories.

The core paradigm for writing documentation is a task-based approach, where
you start with steps 1, 2, and 3 and continue until the task is complete.
However, this model is not usually possible with code documentation because
the code can be inherently non-linear. You cannot start from the top and go
down—you might have to move back and forth between multiple files and
repos.

 Doc consumers have different levels of expertise

Another common challenge is deciding what details to explain and which to
skip. Some developers might have a certain technical background and might
be highly familiar with a certain framework or pattern, while others are not.

When documenting your code, it is important to base the documentation
writing on the knowledge and requirements of your target audience, even at
very different skill levels. If your audience has wildly different needs and
awareness levels, you risk covering too much for experienced developers with
explicit explanations or skipping important information for newer developers.

The solution is to break the documentation into separate documents for
different audiences or provide an incremental discovery model, where initial
information is provided first, and users can click through or expand to
additional information based on their information needs.

Code documentation
challenges

And how you can

avoid them.

Chapter 2

9

 Code documentation requires maintenance

Effective code documentation must include actual parts of the code it seeks to
explain. You must ensure that the code samples work with multiple versions.
For example, if you tweak a code sample, you have to go back and update the
entire code in addition to your explanations for each section to keep everything
in sync.

Documents can be difficult to maintain from one release to another if the
documentation contains many code samples. You need to check that the code
works. You might keep your code separate from the narrative context to test it
more regularly.

Code examples are not the only case where documentation may become
outdated. Any time any process related to the code is described, the code may
change thus making the document obsolete. This can be true for specific
details (such as numeric values), or high level concepts (such as the software
architecture or main flows).

 Documentation is hard to find

If developers can’t easily access documentation when they need it, then what’s
the point of creating it in the first place?

Documentation should be readily available to developers, not something they
have to search for. Consider this: while debugging or addressing critical issues,
the last thing a developer needs is to waste time looking for relevant
documentation. Its effectiveness is maximized when it's effortlessly accessible.

Swimm’s IDE plugins integrate documentation directly within the development
environment. Enabling developers to easily find, create, and maintain
documentation, notifying them when existing documentation relates to a
specific line or section of code they are working on. This means documentation
comes to the developer, not the other way around.

10

1. Write it now. Refine it later

Your future self (and teammates) will thank you. A month later (even a day
later), you won’t remember the intricacies behind your code, or why you chose
to create it in the way you did.

Write it now. Refine it later. Done is better than perfect.

2. Write it with a new developer in mind

Unless your development team is a one-person operation, developers will
inevitably engage with code penned by their peers. Crafting documentation
with new developers in mind guarantees uniform, precise information about
the code and development workflow, diminishing the likelihood of
misunderstandings and mistakes.

Additionally, clear, comprehensive documentation provides a foundational
understanding, reducing the learning curve for developers who are newcomers
to the team or are navigating unfamiliar segments of your codebase.

3. No need to explain every line of code

Document what you would need to be explained if you were picking up this
code to work on it for the first time.

Write in short sentences and keep explanations concise and straightforward.
We don’t mean that you shouldn’t write advanced technical code
documentation. On the contrary, it’s the elements that aren’t so
straightforward that need the best explanations.

13 tips for writing
technical documentation

And actionable

advice that

actually works

Chapter 3

11

4. Add references and code

Context is everything. Add code snippets (with markup language), libraries,

API endpoints, parameters, coding conventions, and additional references to

your explanations.

Referencing other sections of the documentation or code instead of repeating

them makes your documentation easier to update. Maintaining these

references makes it harder to keep your documentation up to date as the code

changes. This is where Swimm’s documentation tool makes all the difference –

automatically detecting and marking where your document is out of sync with

your code).

5. Add a quick start option

When onboarding a new team member to work with your code, you want to

get them up to speed quickly. This is where a comprehensive collection of

related resources can be invaluable.

Give your dev team a quick start page or bullet points that link to all the

relevant resources.

The benefits

 It significantly improves the user experience for your reade

 Provides context by giving them a high-level overview of the

documentatio

 Allows them to easily return to related resources when it’s time

to review the

 Makes the content easier to consume by breaking into chunks

To create a more sequenced and organized learning experience for new

developers, take a look at Swimm Playlists, which allow you to group

numerous types of related resources in a single location for your readers to

work through in the order you choose. Swimm also has created documentation

templates as a quick start option to help you get started.

https://docs.swimm.io/docs/getting-started-guide/creating-a-doc#step-3-add-your-first-code-snippet
https://swimm.io/
https://swimm.io/blog/swimm-universal-playlists-as-code-coupling-for-continuous-documentation/
https://swimm.io/blog/how-to-use-swimm-templates/
https://swimm.io/blog/how-to-use-swimm-templates/

12

6. Make sure it’s accessible

Be sure to keep documentation in a centralized location, organized into logical

folders or buckets. If you’re using Word documents, PDFs, or Google Docs,

ensure that you give viewing rights to the people who need to access them.

Of course, if you use Swimm’s documentation platform, you’ll find docs when

you need them in your IDE and access them right next to the code they refer to.

If nobody can find or access your documentation, it begs the question as to the

point of writing it in the first place.

7. Document code changes

Document significant changes to your code, as you make these changes. By

documenting when the changes occur, as part of your workflow, you make

sure the information is fresh in your mind.

Swimm’s AI capabilities enable you to automatically generate documentation

based on changes made in a pull request.

8. Get feedback

Even if you don’t have an “official” review workflow, share your documentation

with your team and get their feedback.

A second set of eyes will help you recognize that what may be crystal clear to

you might be not clear at all for another developer.

https://swimm.io/blog/swimms-ide-plugins-brings-knowledge-to-your-engineers-in-time/
https://swimm.io/blog/swimms-ide-plugins-brings-knowledge-to-your-engineers-in-time/

13

9. Create an updating plan

If you already have some documentation debt, it’s time to jump in and get free

of it. But the prospect can seem overwhelming. After all, the reason

documentation is something devs prefer to avoid, usually has to do with the

maintenance required.

Fortunately, there are documentation strategies to help you get moving in the

right direction, along with Swimm’s platform for facilitating ongoing

documentation that’s always up to date.

10. Make documentation as easy on yourself as possible

In order for documentation to accelerate the pace of development, it should be

integrated into the development process, saving your team time - not adding

to their workload.

Swimm automatically keeps documentation up to date as part of your CI flow.

Easy, right?

11. Use glossaries

Keep your documentation streamlined by defining terms and using them as

needed. And don’t forget to link to the appropriate glossary entries when you

use the terms you’ve defined.

12. Consider the medium

Great documentation consists of more than endless text. Consider the type of

documentation that will get your point across best: annotated images and

screenshots, code snippets, links to relevant outside articles, videos, diagrams,

charts.

13. Use AI to get started

One of the most obvious use cases of Generative AI technology in the software

development space is for code documentation. But, LLMs are only as powerful

as the data they are trained upon. So while AI is powerful for helping with

some aspects of code docs (think: suggesting an outline, generating specific

explanations of code), LLM models are trained on the higher level details and

nuances that code docs require.

https://swimm.io/blog/documentation-strategies-for-busy-people/
https://swimm.io/product

14

Swimm

Swimm integrates code documentation into the development workflow,
ensuring that documentation is always up to date and accessible when
needed. Swimm was built by developers, for developers.

Key features include:

 Automatic synchronization of documents as the code change
 Code coupled documents stored as Markdown (.md) within the

codebas
 Powerful editing for software engineers, which makes it easy to embed

elements from the code within the document
 Easy access, discovery, and creation directly from the IDE via plugi
 Generative AI capabilities to structure documents and generate

explanations of code snippets

Swimm integrates with the tech your team is already using, including GitHub,
Gitlab, Atlassian, VS Code, JetBrains IDEs and so much more.

5 documentation tools
you should know about

Chapter 4

IDE

JS my-app.js

},

: {

:
:

{

{

:

:

:
:

:

{

: {

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

:

: {
},

},

:
:

adding-new-adapter.sw.md

Discover documentation exactly when you need it most.
In the right context, alongside code

Up-to-date Dec 18th | 14:12 by Stephanie Johns

16
17
18
19
20 },

: {

:
:

{

Up-to-date Dec 18th | 14:12 by Swimm

10
11
12
13

():

. ()

()

S

SA

NEW DOC

Swimm doc
add live lines of code from your repo /

Live code snippet
Highlight code from your repository

Live token
Insert a file path relative to your codebase

Live diagram
Add flow charts, user flows and more

Playlist
Link to another Swimm doc collection

Doc
Link to another Swimm document

Table
Create an inline table

http://www.swimm.io

15

Notion

Notion is a flexible collaboration platform that provides a workspace where

teams can customize pages, databases, and tables to suit unique

requirements. It lets you lay out information creatively, giving your team full

control of the documentation’s display. Notion is suitable for organizations that

want to use a single documentation tool but have multiple teams with varying

needs. It also offers free personal plans.

Notion is known for its flexibility, which can also be a downside because it

might not be as intuitive as a simple tool. However, creating static pages with

text, embedded features, images, and tables, should be easy. Another

drawback of Notion is that it does not include analytics capabilities.

Confluence

Confluence is an enterprise-grade documentation tool from Atlassian and is a

convenient option for teams already using Jira or Trello. Confluence allows you

to easily build and organize teams, promote collaboration between employees,

and maintain documentation from any location. It is free for up to ten users.

Confluence emphasizes collaboration and simplifies communication within the

platform. Users can comment, tag each other, share updates, and provide

instant feedback to ensure all documentation is accurate and up-to-date.

Confluence also offers built-in templates to make it easier to set up and

implement documentation processes.

16

Nuclino

Nuclino is useful for organizing each team’s information into a dedicated
workspace. It allows you to create software documentation for customers and
employees in public and private workspaces. Nuclino also offers features to
make content more engaging, such as images, videos, tasks, embeds, and code
blocks. You can use Markdown or the WYSIWYG editor to create content.

Nuclino enables real-time collaboration—team members can see changes as
they write, eliminating the risk of conflict between versions. You can link to
other pages in your knowledge base by typing @. You can organize items using
workspaces and clusters. It has a commercial license with free and paid
options. Nuclino’s search bar lets you find relevant information, while graphs
and boards help to visualize and organize content to help teams work
intuitively. It integrates with many applications, including Google Drive, Slack,
and Dropbox.

Gitbook

GitBook is a documentation tool for software teams that need to create private
or public documentation. It is partly open source (with an Apache 2.0 license)
with free and paid options. GitBook lets you synchronize your documentation
with a GitLab or GitHub repository containing markdown files. However, this is
a separate repository from the user’s code, so making sure the documents are
up-to-date is still done manually.

However, you don’t have to use Git to use GitBook. You can also use the
intuitive editor to create content or import content from other sources like Word
and Markdown files. You can use unique knowledge bases called “spaces” and
categories called “collections” to organize your content. Other important
GitBook features include version control, real-time collaboration, co-editing,
rich embeds, and simple PDF exports.

17

Effective documentation helps other developers, technical staff and users
achieve their goals. Our experience stems from documenting ourselves, and
accompanying many engineers creating effective documentation. We have
seen again and again how following a few guidelines can make a huge
difference - both for creating more effective documentation and making the
process easier for the writer.

This section assumes you know what document you want to write. If you are
unsure, refer to the specific use cases section. To get started, sign up to
Swimm.

Give your document an actionable title

Don’t skip this step. It will help you focus.

When it makes sense, use one of these formats

 “How to…” (e.g., “How to add a new Plugin”
 “How X works”(e.g., “How the recommendations engine works”
 “How we built X” (e.g., “How we built our CLI”)

The title should tell the reader what they will learn from reading this doc.

Insert code snippets first, before writing any text

 Use the Swimm command /Code snippet before explaining why your code
is important, focus on adding all code snippets that show the flow you are
describing. If you are not describing a flow, select an example that
demonstrates what you are describing, or any code snippet that might be
relevant. If you are unsure what snippets you should add, it might be helpful
to think of someone who doesn’t know the code and highlight what you
would show if you walked them through it

 Make sure you add all relevant snippets.

Writing an effective code
document in 5 steps with Swimm

Chapter 4

http://swimm.io

19

Describe the snippets

Now that you have your snippets, you can re-order them (if necessary), and
describe them. Pro tips

 Explain why things are implemented the way they are
 Focus on the information that’s not in the code
 Explain how a single snippet relates to the other snippets -its role in the

flow
 Refrain from explaining what exactly each line of code does. The code

speaks for itself in isolation, and can tell parts of the story for you
 Use smart tokens that are coupled to elements from the snippet or other

locations in the code. Type backtick to search for code references in your
repo and convert them to tokens.

Add an Introduction section

Explain what this doc is about in an introduction section.

When applicable, split into sections

Create sections using headings. They make the document easier to follow and
navigate

 In the Swimm web app, a Table of Contents navigation is automatically
created on your right sidebar based on Markdown headings. Review it to
make sure your structure is clear

 It helps avoid writer’s block. By focusing first on selecting code snippets,
you don’t bind your brain with copy or styling choices. When you get to
actual writing, you’ll already have a structure and code to prompt you,
which is much better than a blank page

 It makes you select a real example
 The code speaks for itself, at least in isolation. By including these parts of

the code, you don’t need to explain them in English. You can then focus on
parts of the story that are not clear within the code itself.

Template 1:

Component or service overview

17

Introduction

This doc gives a high level overview of {{COMPONENT NAME}}. It is located under

{{use /path to select the folder where the component / service is implemented}}.

Main features

The main features of {{COMPONENT NAME}} are:

Interface

{{How can this component/service be accessed?}}

Include an example from your codebase showing accessing this component/

service

Directory structure

{{Use `/path` and mention the main folders within this component/service}}

Design decisions

{{Explain key design decisions}}

Glossary

Here are some important terms to know:

Bonus: 2

templates to help

you get started

There’s more!
BUT WAIT

20

Template 2:

Internal API

Introduction

In this doc we will describe the API for {{API Name (e.g., sending Analytic

Events)}} and how to use it correctly. We use this API when {{use cases}}.

API definition

Select snippets of the various function's definition, so the reader can understand

where the API is implemented

Simple usage

Show a simple example of using this API

Advanced usage: {{explain a scenario where this is
needed}}

Show an advanced example of using this API

Best practices and additional notes

When using this API, it is important to follow a few best practices and avoid some

common mistakes.

Show an example of a best practice and explain why it is important to implement

the API this way

Get a personalized demo

Want to learn more about Swimm’s reimagined

approach to code documentation?

Sign up for a community demo today or

https://swimm.io/request-demo
https://swimm.io/community-demo

	21
	2
	3
	4
	5
	6
	7
	8
	9
	10
	9-1
	10-1
	11
	12
	13
	14
	15
	16
	20
	18
	19

