
Code review

cheat sheet



Table of Contents

02 Create a code review checklist 4

01 Keep pull requests small 3

03 Introduce code review metrics 5

04 Foster a positive feedback culture 6

05 Documentation is always helpful

06 Conclusion



In our somewhat humble, yet unsurprising opinion, code documentation 

is incredibly important. The need to understand code happens all the 

time – whether onboarding to a new team or working on an area of the 

codebase that developers are unfamiliar with. Without proper 

documentation, we offer a sincere and heartfelt, “good luck!”.

But you know what else is hard? Code review. 
Does documentation make it easier to establish 
rules and procedures, for both the reviewer and 
reviewee?

Absolutely, yet the fact remains that code reviews are essential processes that 

no dev pipeline can go without.



Now, what might best practices for code review entail? We sat down with 

Swimm’s CTO, Omer Rosenbaum to answer that very question, and came up 

with these 5 tips:

Introduction

3



Best practices

for code reviews:



Smaller deployments are easier to design, test, review, and merge. A common 

rule of thumb is that 100 lines of code is a reasonable size for a pull request, 

while 1000 lines is too big. The number of files a distribution changes also 

affects its perceived size - for example, 100 lines of change in one file is 

different from the same number of lines spread across multiple different files.

Breaking large changes into smaller chunks is almost always possible and 

makes many aspects of the development process easier, code reviews 

included. With more practice, reviewers and reviewees can become proficient 

at finding the smallest possible increment of a product. Note that feature 

gates or feature flags may be required to release unfinished product features 

alongside existing features.

01 Keep pull 
requests small

5



Conceptually, a code review checklist is a set of predefined questions and rules 

that reviewers and reviewees should follow during the code review process. 

Code review checklist can help all involved take a structured approach to the 

quality checks they need before submitting or approving code in their 

codebase. Checklists may include:

02 Create a code 
review checklist

6

Readability: 


Identifying redundant or unclear comments in the code

Security:


Identifying weaknesses that expose the code to cyberattacks

Test coverage: 


Identifying the need for more test cases

Architecture: 


Identifying issues like encapsulation and modularity of the code

Reusability: 


Identifying whether the code properly reuses components, 

functions, and services



Reviewers cannot modify someone else's code without measuring its quality. 

Objective metrics help determine the effectiveness of reviews, analyze the 

impact of changes on processes, and predict how long it will take to complete 

a project. Commonly used metrics include:

03 Introduce code 
review metrics

7

Inspection rate:


The rate at which a team reviews a given amount of code, which is 

lines of code (LoC) divided by total review time. If a code review takes a 

long time, you may need to address readability issues in the codebase.

Defect rate:


How often defects are identified. Calculated by dividing the number of 

defects by the time spent reviewing them. This metric helps determine 

the effectiveness of the testing process. For example, if developers are 

slow at finding defects, they may need better testing tools.

Defect density:


The number of defects identified in a given amount of code. It is 

calculated by dividing the number of defects by thousands of lines of 

code (kLOC). Fault density helps identify which components are more 

prone to failure than others, so more resources can be allocated to the 

weaker component.



Effective communication is difficult to master. For reviewers, giving feedback 

on a colleague's work is challenging, both intellectually and emotionally. Below 

is a list of suggestions for improving code review discussions:

04 Foster a positive 
feedback culture

8

Always provide feedback on the code, not the author.

Focus on the most important problems within the code, 


not all the problems.

Admit that there are multiple correct solutions to every problem.

Give objective reasons, not emotions, for a problem in the code.

Always try to provide positive feedback. This can make it easier 

for the code author to accept negative feedback, and can be 

valuable in itself by reinforcing best practices.



Obviously, if you’re reviewing code, you won’t be actively documenting. 

However, code reviews are commonly known to be bottlenecks within the 

development process. So, when reviewers have an understanding of the code’s 

intention, complete with diagrams and methodologies, the process can be 

sped up dramatically -  and is best presented via documentation. And on that 

note, the best documentation includes the following:

05 Documentation 
is always helpful

9

Notes on what was being worked on, when, and by who

Context that explains why it was written in the way it was written 

Any relevant diagrams or visual aids

Full text explanations of how the code was written

go here

now here!

or here!

start here

CODE DOC

App setup

.swm/my-app.js

{

:
},

46

47

48

49



Code reviews are incredibly important when it comes to maintaining a working 

product or platform. Thanks to the best practices outlined above, reviewers 

and reviewees will find their processes more efficient than ever. That said, no 

best practice can be a replacement for solid documentation. 



But, even if you have a documentation process in place, can you honestly say 

that it isn’t a hassle? Furthermore, does it distract reviewers and reviewees 

from doing the one thing they need to do - code? If you said yes to any of that, 

then that’s where Swimm comes in. 



Now, dev teams can improve their workflows with a platform that can 

generate and store in-context code documentation, which in turn streamlines 

collaboration, and empowers teams to work more efficiently and productively.

06 Conclusion

Sign up

Intrigued and want to learn more about Swimm? 


Sign up for a community demo today.


https://app.swimm.io/register
https://us02web.zoom.us/webinar/register/WN_PbnKz9AuTKOm4M0kAXNKIg#/registration

